Non-oscillatory central differencing for hyperbolic conservation laws

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-oscillatory Central Differencing for Hyperbolic Conservation Laws

Many of the recently developed high-resolution schemes for hyperbolic conservation laws are based on upwind differencing. The building block of these schemes is the averaging of an approximate Godunov solver; its time consuming part involves the field-by-field decomposition which is required in order to identify the “direction of the wind.” Instead, we propose to use as a building block the mor...

متن کامل

Non-oscillatory Central Differencing for Hyperbolic Conservation Laws Haim Nessyahu and Eitan Tadmor

Many of the recently developed high-resolution schemes for hyperbolic conservation laws are based on upwind di erencing. The building block of these schemes is the averaging of an approximate Godunov solver; its time consuming part involves the eld-byeld decomposition which is required in order to identify the \direction of the wind." Instead, we propose to use as a building block the more robu...

متن کامل

Non-oscillatory Central Schemes for 3D Hyperbolic Conservation Laws

We present a family of high-resolution, semi-discrete central schemes for hyperbolic systems of conservation laws in three space dimensions. The proposed schemes require minimal characteristic information to approximate the solutions of hyperbolic conservation laws, resulting in simple black box type solvers. Along with a description of the schemes and an overview of their implementation, we pr...

متن کامل

New non-oscillatory central schemes on unstructured triangulations for hyperbolic systems of conservation laws

We discuss an extension of the Jiang–Tadmor and Kurganov–Tadmor fully-discrete non-oscillatory central schemes for hyperbolic systems of conservation laws to unstructured triangular meshes. In doing so, we propose a new, ‘‘genuinely multidimensional,” non-oscillatory reconstruction—the minimum-angle plane reconstruction (MAPR). The MAPR is based on the selection of an interpolation stencil yiel...

متن کامل

A New Fourth-Order Non-Oscillatory Central Scheme For Hyperbolic Conservation Laws

We propose a new fourth-order non-oscillatory central scheme for computing approximate solutions of hyperbolic conservation laws. A piecewise cubic polynomial is used for the spatial reconstruction and for the numerical derivatives we choose genuinely fourth-order accurate non-oscillatory approximations. The solution is advanced in time using natural continuous extension of Runge-Kutta methods....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics

سال: 1990

ISSN: 0021-9991

DOI: 10.1016/0021-9991(90)90260-8